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ABSTRACT
In the modern Web, it is common for an active person to
have several profiles in different online social networks. As
new general-purpose and niche social network services arise
every year, the problem of social data integration will likely
remain actual in the nearest future. Discovering multiple
profiles of a single person across different social networks
allows to merge all user’s contacts from different social ser-
vices or compose more complete social graph that is help-
ful in many social-powered applications. In this paper we
propose a new approach for user profile matching based on
Conditional Random Fields that extensively combines us-
age of profile attributes and social linkage. It is extremely
suitable for cases when profile data is poor, incomplete or
hidden due to privacy settings. Evaluation on Twitter and
Facebook sample datasets showed that our solution signifi-
cantly outperforms common attribute-based approach and
is able to find matches that are not discoverable by using
only profile information. We also demonstrate the impor-
tance of social links for identity resolution task and show
that certain profiles can be matched based only on social
relationships between online social networks users.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Motivation: One of the major hindrances to exploitation

of social network data is the fragmentation of its population
into numerous proprietary networks with different purposes.
Despite attempts to introduce universal solutions that al-
low to cross-platform information exchange and usage (like
Google’s OpenSocial initiative1), there are still many media
applications and services that tend to build its own social
network rather than building upon the rich data available
about existing social relationships. Impressive statistics on
online social networks (OSN) users overlapping are gathered
in [20, 14, 4, 12]. The most recent of them [14] indicates that,
for instance, 91% of Twitter users are also users of Facebook,
while only 20% of Facebook users have an account at Twit-
ter. The difference in percentages is caused mainly by the
difference in total number of users.

From the marketing perspective, today 84% of online cus-
tomers belong to at least one OSN [20]. As one may expect,
many of them split their social activities into several dif-
ferent networks. Therefore, a modern web marketer must
have a tool to sift myriads of network accounts from differ-
ent OSNs in search of valuable customer with all his virtual
identities. One of frequently emerging use-cases about such
a tool deals with targeted marketing via promotional
messages. Once a target user is detected, the marketer
should try not to bother him with multiple messages with
same content.

Merged profiles of a single user would help to build a more
comprehensive view of all available data. The result is more
complete social graph that might be valuable for scien-
tists and entrepreneurs in following areas: collaborative fil-
tering [11], information retrieval [7], sentiment analysis [21],
and many other fields.

Another important application area is automatic con-
tacts merging that takes place mostly in mobile devices.
Often advanced users provide full access to several OSN
and email accounts in order to somehow integrate the data
streams from friends. Several solutions are known (Gist2,

1http://code.google.com/apis/opensocial/
2http://gist.com/

mailto:sbartunov@gmail.com
mailto:korshunov@ispras.ru
mailto:seungtaek.park@samsung.com
mailto:wonho.ryu@samsung.com
mailto:h.dong.lee@samsung.com


8hands3, AddressBookSync4, Google Sync5, etc), but their
functionality relies mostly on too simple attribute-based heuris-
tics that fail in most cases when profile fields are not identical
or even just written in different languages.

Challenges: A major research challenge, thus, is to match
user’s information across different OSNs. Modern publica-
tions refer to this problem as identity resolution which is an
instance of more general problem called entity resolution,
or entity matching, or record linkage, etc. All these areas
have been intensively studied during the past decades with
an eye to enhance matching of different objects, from price
lists to citation networks and criminal databases. For our
purposes, these approaches should be applied to profiles of
OSN users. This imposes additional demands to the match-
ing algorithm: it should be able to process raw data from
sources with different schemas and make decision based not
only on profile data (possibly poor and incomplete) but also
on numerous links.

Problem: We define the problem of user identity reso-
lution (UIR) as discovering as many as possible correctly
matched profile pairs (v, u), v ∈ A, u ∈ B. < A,B > are
social graphs being compared. By social graph we mean
a network that represents certain part of online social ser-
vice where nodes are user profiles with their attributes (such
as full name, date of birth, etc) and edges are social links
between them. Such links can be directed or undirected de-
pending on relationships they represent. For profile v ∈ A
we will denote the matched profile as µ(v) and call it projec-
tion of v ∈ A to graph B. Another synonym of projection
is match. For brevity, we will use these two terms for de-
noting a pair of matched profiles unless any other context is
given. If there’s no correct match for profile v ∈ A, then we
assign it neutral projection: µ(v) = N. An example of such
projection configuration is shown in Figure 1.

This research work has made a number of significant con-
tributions, as summarized below:
• We introduce novel Joint Link-Attribute (JLA) ap-

proach to discovering multiple profiles of a single user
across different OSNs that combines information from
profile attributes with structures of the networks.
• We formulate user identity resolution problem in terms

of inference in Conditional Random Fields model con-
structed on a social graph. We also improve the results
by filtering out unwanted projections based on a nu-
merous network features.
• We validate our proposed ideas and evaluate JLA algo-

rithm through a comprehensive experimental study6,
using a real dataset collected from Facebook and Twit-
ter. The experimental results show that JLA method
outperforms common approaches and produces high-
quality results.
• We share the anonymized dataset consisting of 16 ego-

network samples from Facebook and Twitter with man-
ually mapped right projections. The dataset could be
utilized for evaluating different UIR approaches.
• We demonstrate the importance of social links for iden-

tity resolution task and show that certain profiles can
be matched based only on social relationships between

3http://8hands.en.softonic.com/
4http://danauclair.com/addressbooksync/
5http://www.google.com/mobile/sync/
6Demo: http://modis.ispras.ru/uir/

Figure 1: An example of UIR results. Graph A is
projected to graph B by dashed lines. Blue node
pairs are anchored, gray nodes are not projected,
white node pairs are projections discovered by the
algorithm
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OSN users.
• We show that the proposed algorithm could also be

successfully utilized as a de-anonymization tool that
aims at matching user profiles when no attribute data
is available for one of the networks.

The rest of the paper is organized as follows. Section
2 provides a brief introduction in what have already been
done in the field of user identity resolution in OSNs. Section
3 provides the algorithm’s description and implementation
details. Section 4 describes experimental setup and results
with discussion. We conclude in Section 5 with possible
directions for future work.

1.1 Global and Local Perspectives
The described problem could be approached from both

local and global perspectives. The latter means arbitrary
graph merging, in particular large samples or even com-
plete social graphs. Despite the attractiveness of such large
scale analysis, this approach has several significant draw-
backs that could bother an OSN researcher. At first, it may
be hard to obtain large samples from online social service.
Social services such as last.fm and Twitter may provide legal
access to public user data via API, but limit a number of re-
quests. Facebook which is currently the most popular OSN
restricts web-page scraping without explicit permission by
terms of service7. Access to Facebook API also requires di-
rect permission of each particular user8. Automatic crawling
an OSN may also affect users’ privacy, hovewer, legal issues
of user identity resolution are out of scope of the paper.

The second issue is about preparing large test collections.
While it’s easy to manually discover and mark up a number
of profile matches and somehow measure precision of UIR al-

7https://www.facebook.com/legal/terms
8https://developers.facebook.com/docs/
authentication/
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gorithm, reliable estimation of recall (that is, how many cor-
rect profile matches were found) requires virtually all those
matches to be presented in the reference set. Since it could
not be done without effort of profile owners, vast organiza-
tional work is required to compose tests for global-oriented
algorithms. Thus, most related studies on user identity res-
olution (section 2.1) are lacking direct testing on completely
marked-up data.

In this paper, we only consider local identity resolution,
that is, discovering matching profile pairs across the contacts
of the given seed user. In other words, our approach requires
A and B to be ego-networks of the seed user. In a sense,
this follows several practical use-cases focused on seed’s ego-
networks such as contact merging in mobile devices. We
assume that seed user’s permission implies access not only to
seed data, but also to profiles of her friends and connections
between them (first neighbourhood). This assumption holds
for Facebook API (with appropriate permission set), so it
should be right in other environments too. Such a restriction
helps to comply with privacy of users and makes quality
testing realistic.

2. RELATED WORK
We consider three directions relevant to our research. They

differ in data sources and underlying models which results
in different application areas. User identity resolution deals
with user data obtained from different sources and aims at
agglutinating profiles that belong to the same real person.
Entity resolution does a similar job but for virtually any
kind of data with the same structure, that is, its main ap-
plication is to find duplicated records/profiles/etc in homo-
geneous data sources. Finally, de-anonymization takes ano-
nymized user data (e.g., social graphs) as an input and tries
to re-identify users in an anonymous graph. Moreover, this
technique is not required to produce exact mappings. That
is, for a given user, a set of possible mappings is often con-
sidered an acceptable result.

2.1 User identity resolution
To date, the largest effort in this field seems to be the

master’s thesis of Veldman [22]. She introduces a lot of
heuristics that exploit both raw account data and existing
linkage among profiles. Similar studies are presented in [13,
6, 16, 23]. Motoyama et al [13] attempt to match Facebook
profiles against MySpace ones. In the study of Gae-won
et al [6], the same is done for Twitter and EntityCube ac-
counts. Raad et al [16] generate random social network pro-
files and then apply much sophisticated heuristics to them;
their goal is not to miss any possibly useful piece of informa-
tion within the network. In the work of Vozecky et al [23],
user profiles from Facebook and StudiVZ are represented as
n-dimensional vectors. Then, the vectors are compared by
means of exact matching, partial matching and fuzzy match-
ing. The authors also investigate the importance of different
profile files for matching.

Also, interesting are Foaf-o-matic9 and OKKAM10 projects
that aim at social profiles integration by means of formal
FOAF (Friend-of-a-friend) semantics. Their features are de-
scribed in [1] and [2].

9http://www.foaf-o-matic.org/
10http://www.okkam.org/

Despite the progress made by the authors of aforemen-
tioned studies, they all utilize too simple profile compari-
son model based mainly on pairwise comparison using string
similarity of attributes. The most common approach is to
independently choose for each profile v ∈ A the most similar
one u ∈ B by applying fuzzy comparison methods (mostly
string matching techniques) to attribute pairs, computing
total similarity score, and cutting off with certain threshold.

The key of improving existing attribute-based UIR meth-
ods is involving additional data sources, in particular social
linkage data. The most widely used yet straightforward way
for incorporating such information is assuming some pro-
files mapped successfully (i.e. by high attribute similarity)
and then taking into account distance/similarity functions
in partially mapped contact lists, just like it is done in [22].
Clearly, this heuristic could lead to a bias although being
useful in some cases. Our JLA-model only compares origi-
nal contact lists and is thus free from this drawback.

2.2 Entity resolution and Record de-duplication
Kopcke et al [8] share comparison results of different entity

resolution frameworks. Among other things, they describe
basic requirements, design patterns, and accuracy evalua-
tion standards for such frameworks. One of the most recent
efforts is OYSTER11 project which is highly-configurable
framework that allows for entity/identity resolution, man-
agement, and capture. Stanford Entity Resolution Frame-
work12 is also highly relevant to our needs; the authors have
put lots of efforts to various theoretical aspects of entity
resolution.

The work of Singla et al [18] is an example of applying
graphical models to entity resolution task. The authors used
Markov logic to find matches between database entries and
real-world entities. They construct a Markov Logic Network,
where nodes are atomic statements with 0 weight (potential)
if they are known to be unsatisfiable and 1 if they are known
to be true. Connections between these nodes represent their
logical relationship. Such network could be processed in
order to estimate most probable configuration of statement
weights.

The most similar to the present work is a method pro-
posed by Singla et al in the earlier study [19]. The authors
successfully used Conditional Random Fields for record de-
duplication in the citation network for scientific papers. The
main idea is to formulate the global problem of identity res-
olution as a set of interconnected local problems in terms
of probabilistic logic. The authors build CRF graph where
record nodes represent questions such as“are these two records
the same?” while attribute nodes store similarity values of
object attributes. And the result of inference consists of
“yes/no”answers for each belonging question. This approach
has following disadvantages that hinder its use for identity
resolution of OSN users:
• The granularity of CRF graph makes this approach

diffucult to scale for big data.
• Only string similarity metrics are used for object com-

parison whereas graph similarity metrics are not em-
ployed.

The proposed JLA model is strictly intended for social
graphs and thus uses more natural representation of the
graphical model built on top on of the graphs being com-

11http://sourceforge.net/projects/oysterer/
12http://infolab.stanford.edu/serf/



pared. It also uses both string and network similarity which
is important in a social network processing tasks.

2.3 De-anonymization
Since our algorithm claims to identify users even with ano-

nymized setting when only social graph information is avail-
able, it is reasonable to compare our approach to the recent
results in the de-anonymization field [24].

The authors extensively use network information in or-
der to get all profile pairs that belong to the same persons
from two given social graphs. Their approach shares some
features with proposed JLA model. It includes finding seed
users, using them as anchor nodes (already mapped), recur-
sively propagating information through one of the graphs,
and extending the set of anchor nodes. Conceptually, this
approach is similar to the proposed JLA model in the idea of
using social links for propagating information and measur-
ing network distances in order to find best matching profile
pairs. With that, there are a set of significant differences
that are mainly caused by the fact that we only consider
local perspective:
• Graphs are processed by greedy recursive algorithm

while we perform inference by global structural op-
timization which provides better results although is
much more computationally complex.
• Initial mappings are found by searching both graphs

for k-cliques with matching properties while our algo-
rithm accepts arbitrary set of anchor nodes if any.
• Algorithm tries to match unmapped nodes from differ-

ent graphs by comparing mapped neighbours of each
node. In JLA-model, we compare unmapped neigh-
bours of nodes from single graph.
• Finally, we test our method with manually mapped

data while the authors of [24] compare their results to
profile pairs with exact name matches. Therefore, we
measure the quality with more precision and reliability.

3. JOINT LINK-ATTRIBUTE MODEL
JLA model is based on the next basic considerations:
1. Choosing projections for adjacent nodes in graph A are

interdependent problems, or in other words choosing
projection for one node depends on such decisions for
all adjacent nodes.

2. If two nodes in graphA are connected, then they should
have lowest possible value of network distance.

Let’s follow the explanatory example shown in Figure 2.
To find a projection for node v, we consider the next criteria:
• How similar node v is to its possible projection based

on similarity of important profile fields?
• How many contacts a possible projection shares with

projections of neighbours of node v? If we already
know projections for nodes a, b, and c (anchor nodes),
then intuitively a projection for v should share a lot
of contacts with µ(a), µ(b), and µ(c). In other words,
µ(v) should minimize network distance between itself
and projections of nodes surrounding v. This captures
the fact that social networks tend to have high clus-
tering coefficient.

The same holds for node u and any other unprojected node.
Even if there are no anchor nodes around, sometimes it is
still possible to find a projection, because the information
propagates from anchor nodes to all others through the net-
work.

Thus, JLA model involves both attribute information and
structure of graphs A and B. One of them is utilized for
network distance computation while the second one is used
as dependency graph in which a link between two nodes
requires minimization of network distance for their projec-
tions.

3.1 Probabilistic model
For solving a problem of finding optimal configuration

of profile projections we use probabilistic framework called
Conditional Random Fields (CRF) [9].

In this paper we consider so called associative pairwise
CRFs built on top of graph A = (V,E). This impose a
restriction on graph A by requiring it to be undirected. Ob-
served variables are modeled by nodes (profiles) of graph A:
X = {xv = v | v ∈ V }. Hidden variables are correct projec-
tions of the nodes: Y = {yv = µ(v) | v ∈ V }. They take
values from a node set of the graph B: yv ∈ B. Each hidden
variable yv is connected to xv by factor Φ. Edge modeled
by factor Ψ between hidden variables yv and yu exists if and
only if (v, u) ∈ E.

The posterior probability of projections configuration is:

p(Y|X) ∝ exp(−E(Y|X)), (1)

E(Y|X) =
∑
v∈V

Φ(yv|xv) +
∑

(v,u)∈E

Ψ(yv,yu),

where E is energy functional consisting of unary energy
function Φ and binary energy function Ψ. More detailed
explanation of energy functions is given in section 3.2.

The joint nature of the model is expressed by associating
profile distance (opposite of similarity) with unary energy Φ
and network distance with binary energy Ψ.

Thus, the model is highly adaptable to the available input
data (Figure 3). If there is no graph data, then optimiza-
tion of the energy functional (1) degrades to greedy profile
matching model as it is implemented in most UIR systems
(see section 2.1) and Ψ ≡ 0. On the other hand, in anony-
mized setting with no profile attribute information, Φ ≡ 0
and only network information is used.

It should be noticed that information required for our
model is not symmetric for graphs < A,B >. Thus, only
seed user profile, profiles of its friends, and inner connections
between them are taken from graph A, whereas complete

Figure 2: Information propagation from anchor
nodes (filled blue). Projections for nodes inside each
dashed area are estimated independently
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Figure 3: Factor structure of the different models:
a) attribute-based UIR b) anonymized JLA c) JLA
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friend lists are needed for network distance computation on
graph B. UIR process could be initiated by an online so-
cial service in order to enrich user contacts by connecting
them with profiles from another social network. In such
case, friend lists of seed contacts should be available and
so this “internal” network may act as graph B while “exter-
nal” ego-network could be obtained by seed user permission
and intended for graph A. Apparently, this is the minimum
information needed for incorporating network features into
the UIR procedure.

The optimal, or most a posteriori probable (MAP) config-
uration of hidden variables Y with given values of observed
variables X minimizes the energy functional:

Y∗ = argmin
Y

E(Y|X) (2)

Our representation of CRF is very similar to pairwise
Markov Random Field, so we adapted the inference method
based on quadratic programming relaxations [17] originally
proposed for Markov Random Fields.

3.2 Energies Computation

3.2.1 Energy Functions
Unary energy function Φ is for scaled attribute-based dis-

tance between profile v ∈ A and its projection pr(v) ∈ B:

Φ(yv|xv) = α(v) · profile-distance(v, µ(v))

We assume that profile-distance(v, µ(v)) ranges from 0 to
1 while minimum value means that v and it’s projection
belong to the same person according to profile fields.

Since the topology of CRF is not predefined and is be-
ing constructed from graph A, then the sum of binary en-
ergies between node v ∈ A and adjacent nodes could lie
in [0, d(v)] depending on the degree d(v) of node v, while
profile-distance(p, µ(v)) ≤ 1. In order to balance between
profile and network similarities, we introduce balancing fac-
tor α(v). We achieved best results with α(v) = log(d(v)).

Binary energy function Ψ also ranges from 0 to 1 and
represents network distance between projections of nodes v
and u:

Ψ(yv,yu) =

{
∞ if yv = yu

network-distance(µ(v), µ(u)) otherwise

Here network-distance(µ(v), µ(u)) could be any normalized
distance function such as Dice coefficient. We don’t allow
adjacent nodes to have the same projection because it would
likely output minimum energy but lead to output with many
same projections.

3.2.2 Unary Energy

Table 1: Schema mapping for attribute comparison
of Facebook-Twitter profile pair

Facebook Twitter Comparison function

Name
Name VMN
Screen name Screen Name measure

Website URL URL measure

For attribute-based profile comparison, the model described
by Vozecky et al [23] is used. Each user profile is represented
as a vector of attributes Pv = (f1, f2, ..., fn) where fi is the
i-th profile field.

After the vectors are built, the algorithm utilizes matching
functions to calculate a similarity score between correspond-
ing vector fields. A similarity vector V is obtained as a result
of this operation, such that its k-th element is:

V
(Pv,Pu)
k = simk(fv

i , f
u
j ), (3)

where 1 ≤ i ≤ |Pv|, 1 ≤ j ≤ |Pu|, Pv ∈ A, Pu ∈ B.
simk is a particular field comparison function that takes

data in field fv
i from Pv and fu

j from Pu and returns a
value between 0 and 1. In general, Vk = 1 if fv

i and fu
j

are identical; Vk = 0 if there is no similarity between those
fields. The function simk differs from field to field since each
field may have a different format and semantics.

3.2.3 Twitter and Facebook Profiles Comparison
For comparing Facebook and Twitter profiles, we em-

ployed the concept of schema mappings [10] in order to align
their attribute vectors. This concept is used to automate the
process of mapping structures from different sources. Tak-
ing Facebook and Twitter profiles as data sources, we result
in the following mapping (Table 1).

Each pair of attributes is associated with a specific similar-
ity function. VMN is a fuzzy matching technique reported
to be very accurate for name matching [23]. Screen Name
measure simply compares Facebook user name with Twitter
full user name and Twitter screen user name (ID). It returns
1 if they are equal and 0 otherwise. URL measure is intro-
duced for handling different URLs available from profiles; it
attempts to find matches in different combinations of URLs
and user names.

As a preliminary step, we detect the language of profile
fields with help of language-detection library13. Later on,
when two profile fields are compared, we first check if the
profiles are in the same language. If they are not, then we
transliterate both strings into Roman transcription (roma-
nization) by means of JUnidecode library14.

3.2.4 Learning profile distance function
To account for all available features (sometimes missing if

so is corresponding attribute) for profile distance/similarity
evaluation, we constructed the profile-distance(v, u) function
in machine learning fashion. We have trained a classifier
which is able to differentiate between correct and incorrect
projections. It takes a feature vector (3) as an input and
outputs the probability that projection u = µ(v) is not cor-
rect for profile v. Since Φ is bounded in [0, 1] and so is

13http://code.google.com/p/language-detection/
14http://sourceforge.net/projects/junidecode/



Table 2: Performance of profile distance classifiers

classifier recall precision F1

Naive Bayes 0.862 0.308 0.453
C4.5 0.569 0.86 0.685

C4.5 with MultiBoosting 0.669 0.879 0.76

corresponding distance function, we assume that:

profile-distance(v, µ(v)) = P(wrong projection|V (Pv,Pu))

where V (Pv,Pu) is similarity vector (3).
Evaluation results for different classifiers with our dataset

(section 4.1) using 3-fold cross-validation are shown in Table 2.
As one can see, C4.5 [15] decision trees with multi-boosting [25]
in average performed better than other classifiers and thus
were chosen for further experiments with Laplace smooth-
ing enabled. Certain classifiers such as SVM could not be
applied to the problem directly due to missing attributes
in the dataset and thus were excluded from the comparison.
This experiment also shows that none of classifiers could per-
fectly “explain” the choice of correct projections using only
attribute information.

3.2.5 Binary Energy
In our experiments we used several variations of Dice co-

efficient which is a normalized number of vertices directly
connected to both nodes. It was chosen mostly due to its
computational simplicity and markovness. We calculate the
network distance as an opposite of its value:

network-distance(v, u) = 1− 2 · w(Lv ∩ Lu)

w(Lv) + w(Lu)
, v, u ∈ B,

where Lv and Lu are sets of first neighbours of v and u
respectively. w(L) is a weight of node set L.

In case when standard Dice coefficient is used, weighting
function is defined as w(L) = |L|. We have implemented
several alternative weighting functions and empirically esti-
mated the best one: w(L) =

∑
v∈L 1/ log(d(v)) where d(v)

is the degree of node v. We use this weighting function in
all further research and experiments because it allows to ac-
count the fact that sharing a friend with small number of
friends brings greater increase of similarity than sharing a
popular friend with many contacts.

3.3 Anchor nodes
Anchor nodes (also referred to as seed nodes) are nodes

in graph A for which right projections in graph B are known
a priori. They could be found by searching for user profiles
that are linked to another OSN by their owners. Another
way is to find complete or near-complete user name matches
between profiles. We employed this heuristic in our experi-
ments by using profile-distance function with thresholds.

For each anchor node v we fix the projection µ(v) to it’s
matched profile anchor(v) by assigning Φ(yv|xv) = ∞ if
yv 6= anchor(v).

Anchor nodes are also necessary in anonymized setting.
Moreover, they help to reduce the computational time re-
quired for inference. If a subgraph of graph A is connected to
the rest of nodes only through anchor nodes, then inference
is performed independently for this component (Figure 2).

3.4 Results Pruning
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all distances
between right projections

Figure 4: Cumulative distribution of network dis-
tance

Our goal was to achieve the highest possible recall while
keeping precision close to the maximum (see section 4.3 for
details on accuracy evaluation). From our point of view,
that is what most of users expect from identity resolution
application: they are not willing to spend any time checking
the results. Therefore, every answer found by the algorithm
should be precise for certain. Here is where real challenge
lies: maximize the fraction of discovered projections and
try to provide no false positives at all. In this subsection
we describe another important contribution which helps to
comply with this requirement by removing suspicious pro-
jections from the results.

Most identification errors are caused by weak connectivity
in the model graph. Indeed, projection that minimizes net-
work distance with the only neighbour node would not be
necessary a right match. On the other hand, if the number
of surrounding nodes is relatively large, choice of projection
more likely tend to be correct.

In the ideal case, we could design the binary energy func-
tions in a way to prevent such situations by assigning a spe-
cial value to Ψ(N,yu) and Ψ(yv,N) with a threshold se-
mantics. This would force the algorithm to choose neutral
projections in cases when it minimizes the full energy. How-
ever, there is no simple way to implement this using only
information about two projections (and possibly the nodes
themselves). Figure 4 demonstrates the network distances
distribution in our main dataset. As we may see, there is no
reasonable value for neutral projections in this distribution
since lesser values are better.

Making the model more complicated by extending it from
pairwise interactions to more complex structure would af-
fect the computational complexity of inference. Thus, we
propose two different solutions for the problem.

3.4.1 Mutual projections
Firstly, we project graph A to graph B and also perform

reverse projection from B to A (CRF is consturcted from
graph B and network distances are computed with graph
A). Then, we merge the results in order to keep only mutual
projections discovered by both direct and reverse passes.

This technique shows good accuracy comparing to attribute-
based baselines. However, it is quite straightforward, takes
two times longer, and doesn’t take into account the cause of
each mistake. To overcome these drawbacks, we elaborated



Table 3: Performance of pruning classifiers

classifier recall precision F1

Naive Bayes 0.762 0.256 0.383
Support Vector Machine 0.662 0.935 0.775

C4.5 0.715 0.939 0.812
C4.5 with MultiBoosting 0.844 0.902 0.872

supervised machine learning approach.

3.4.2 Pruning classifier
We have trained a classifier that is able to find incorrect

projections using properties of surrounding nodes (including
anchor nodes) and profile distance. In other words, the clas-
sifier determines whether the context of the particular node
was qualitatively enough to infer good projection.

For each match we compute the following set of features:
1. Profile distance of the projection
2. Average network distance to the surrounding projec-

tions
3. Fraction of anchor nodes in the first neighbourhood
4. Consistency of surrounding anchor projections:

1

n
·
∑
v

1

n− 1

∑
u6=v

network-distance(µ(v), µ(u))

In case when no anchor nodes are given, we exclude the
third feature and assume that all surrounding nodes are an-
chors when calculating the fourth.

Performance evaluation results for trained classifiers are
shown in Table 3. All possible projection configurations
for Twitter → Facebook projection built from main dataset
were used as training set. C4.5 with multi-boosting per-
formed better than others and thus was chosen for the ex-
periments.

4. EXPERIMENTS
In this section we describe our experiments with Twit-

ter and Facebook sample graphs. All evaluations of super-
vised machine learning algorithms were performed using 3-
fold cross-validation in order to provide confident results.

4.1 Dataset
In order to collect our main dataset, we ran snowball sam-

pling of 16 seed users in both Twitter and Facebook. Each
sample includes publicly available profile information and
contact lists for the seed node and its first order mutual
contacts. The motivation for such setup is provided in Sec-
tion 1.1.

It is also important to decide what we consider connec-
tion. In Facebook, all connections are mutual and have
”friendship” semantics. The situation in Twitter is different,
connections are directed and represent rather ”subscription”
relationship. Therefore, we consider only mutual follow-
ing in Twitter in order to simulate ”friendship” relationship.
Clearly, that could only understate the accuracy of results,
therefore such modeling seems to be representative enough.
Nevertheless, JLA model does not require all connections to
be directed. Hence, one may use Facebook (or any other
undirected graph) as a model graph and compute energies
on Twitter (or any other graph with or without directed
edges) by constructing its own network distance function
taking into account both follower and followee lists.

Table 4: Dataset statistics

Twitter Facebook
Main dataset

# of seeds 16
# of profiles 398 977
# of connections 1 728 10 256
total # of matches 141
total # of anchor nodes 71

Reidentification dataset
# of seeds 17
# of profiles 1 499 7 425
# of connections 15 943 172 219
total # of matches / anchor nodes 161

All samples have been marked up with right projections
(ground truth) by the owners of seed profiles. Structure of
the samples is shown in Figure 1.

Anonymized ground truth is available from our server15.
We also prepared reidentification dataset in a similar way

for other 17 seed profile pairs. This dataset is intended only
for experiments in re-identification experiments on our algo-
rithms in section 4.5.

Overall dataset statistics are provided in Table 4.

4.2 Baseline
There are two baseline algorithms in our study:
1. Compute profile distance as a weighted sum of the fea-

tures described in section 3.2.3. The weights are esti-
mated by linear regression assuming that weighted sum
should be 0 for right projections.

2. Compute profile distance using classification probabi-
lity (defined in section 3.2.4). We used this approach
for anchor nodes extraction when running JLA algo-
rithm.

They both rely on all-to-all pairwise comparison between
Facebook and Twitter profiles. Given a set of profile pairs
with measured attribute-based distance, best projections are
estimated upon the condition that each profile from graph A
can be matched with at most one profile from graph B and
vice-versa (assignment problem). We have also estimated
reasonable thresholds for all baselines in order to maximize
recall while keeping precision high as it would be required
in a real system.

4.3 Accuracy Evaluation
We use following versions of conventional precision and

recall metrics:

recall = tp/(tp + fn), precision = tp/(tp + fp)

Here we assume correct profile pair match as true-positive
(tp), incorrect as false-positive (fp), and non-discovered as
false-negative (fn). For testing we use lists of correct pro-
jections obtained from the owners of seed profiles. Table 5
contains summarized accuracy evaluation results.

Both baselines showed high precision, but could not dis-
cover many matches using only attribute information which
led to relatively low recall. These results prove the neces-
sivity of involving link data into UIR and emphasize the

15http://modis.ispras.ru/uir/



Table 5: Accuracy evaluation results

algorithm R P F1

agnostic to direction of projection
Baseline 1 (weighted sum) 0.45 0.94 0.61
Baseline 2 (probability distance) 0.51 1.0 0.69
JLA, intersection, anonymized 0.6 1.0 0.76
JLA, intersection 0.66 0.99 0.79

Twitter → Facebook
JLA, anonymized (Φ ≡ 0) 0.62 1.0 0.77
JLA 0.79 1.0 0.89

Facebook → Twitter
JLA, anonymized (Φ ≡ 0) 0.61 1.0 0.76
JLA 0.8 1.0 0.89

limitations of attribute-based UIR systems in environments
with poor profile data, such as Twitter.

All experiments with JLA were performed in normal and
anonymized setting. Anonymized setting means that no pro-
file attribute information is available.

JLA with mutual projections pruning (section 3.4.1) per-
formed worse comparing to classifier pruning (section 3.4.2),
because the former technique appeared too aggressive and
lowered the recall. As a result, mutual projections pruning
was not able to significantly outperform the baselines. From
now we will consider only JLA with classifier pruning.

JLA with different projection directions (Twitter→ Face-
book and Facebook→ Twitter) showed similar results. When
computing network distances with Twitter graph, we as-
sumed contact list as a list of mutual followers and got
the best results. JLA could discover about 80% of cor-
rect matches with 28% advantage comparing to the base-
line. Since it is a supervised machine learning algorithm, we
performed all experiments with 3-fold cross-validation.

4.4 Impact of Anchor Nodes
Another experiment has been done in anonymized setting,

but with access to anchor nodes’ projections. It was intrigu-
ing to investigate the dependency of JLA accuracy on the
amount of given anchor nodes.

Figure 5 illustrates how the average performance (mostly
recall) changes with the fraction of anchor nodes at the in-
put. The margin between anonymized JLA and second base-
line is 10% in recall (since baseline 2 is used to get the anchor
projections). That is, JLA algorithm could find about 10%
more matches with knowledge about half of anchor nodes.
It demonstrates that although being intended for UIR, JLA
model could be useful as a de-anonymization tool whose ac-
curacy depends on the amount of provided anchor nodes.

In normal setting with profile information available (Fi-
gure 6), the drop of recall is not so clear because some
matches are still found based on low unary energy. Due
to good connectivity of Facebook graphs in average (see
Table 4), the information could propagate from projections
with low unary energy and facilitate discovering other matches.
This explains the nearly horizontal recall graph for Facebook
→ Twitter projection in the [0;0.5] interval of ANF.

4.5 Re-identification
As we have discussed already, it is hard to obtain reli-

able dataset for UIR without involving seed profile owners.
Thus, we decided to test our algorithm automatically on
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our reidentification dataset (section 4.1). At first, we found
some matches using profile information only. After that,
we investigated the performance of JLA according to only
those easy-found anchor nodes by removing some of them
and measuring success of the algorithm. We ignored projec-
tions for all other nodes. To make the experiment honest,
we removed all profile information for the anchor nodes and
their possible projections. Doing so, we ensured that they
could be matched only by network distances to surrounding
nodes. For other nodes profile information was available. We
reused our main dataset for training all supervised learning
algorithms.

Results are shown in Figure 7. As one can see, with no
prior information about anchor nodes’ projections, the preci-
sion is not that high, but it quickly grows with anchor nodes
fraction (ANF). Starting from 80% ANF, all of them could
be identified correctly. This experiment shows once again
that complete knowledge about anchor nodes isn’t required
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Figure 7: Impact of anchor nodes on re-
identification. Profile information is available



for their successful identification because enough informa-
tion is contained in the social links.

One of the important results is that we confirmed the
intuitive idea: the greater is the node degree, the more likely
it would be identified correctly. The converse is also true -
the greater are degrees of the anchor nodes, the better results
will be achieved.

5. CONCLUSION & FUTURE WORK
In this paper, we have presented new Joint Link-Attribute

model for user identity resolution and evaluated it with real
data from Twitter and Facebook. We showed its efficiency
as UIR or de-anonymization tool. We proved the signifi-
cance of social links for the problem and empirically mea-
sured the impact of several kinds of available information.
We demonstrated that building the model on the more con-
nected graph (Facebook in our case) is preferred in most
cases (especially when some information is hidden or miss-
ing). Finally, we demonstrated the interesting and natural
application of graphical models in social network analysis.

Despite the algorithm success in a local perspective, a
major challenge would be scaling it up to large social graphs.
We believe that it is possible to make the inference feasible
by decomposing a big problem into a number of small ones
with help of anchor nodes and by reusing the sparseness of
the data.

Although we experimented only with first neighbourhood
samples, it is an open question how robust our algorithm is
to different sampling techniques and link data corruption.
Dealing with these problems is another interesting direction
of our future work.
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