
Biomedical Text Categorization with Concept Graph

Representations Using a Controlled Vocabulary

Meenakshi Mishra, Jun Huan

Department of Electrical

Engineering and Computer Science,

University of Kansas

{mmishra, jhuan}@ittc.ku.edu

Said Bleik

Information Systems Department

New Jersey Institute of

Technology

sb252@njit.edu

Min Song

Department of Lib. and Information

Science

Yonsei University

min.song@yonsei.ac.kr

ABSTRACT

Recent work using graph representations for text

categorization has shown promising performance over

conventional bag-of-words representation of text

documents. In this paper we investigate a graph

representation of texts for the task of text categorization. In

our representation we identify high level concepts extracted

from a database of controlled biomedical terms and build a

rich graph structure that contains important concepts and

relationships. This procedure ensures that graphs are

described with a regular vocabulary, leading to increased

ease of comparison. We then classify document graphs by

applying a set-based graph kernel that is intuitively sensible

and able to deal with the disconnectedness of the

constructed concept graphs. We compare this approach to

standard approaches using non-graph, text-based features.

We also do a comparison amongst different kernels that can

be used to see which performs better.

Categories and Subject Descriptors

Dataming Methodologies: Biomedical text mining

Keywords

Text Categorization, Graph Classifier, Biomedical informatics

1. INTRODUCTION
Biomedical electronic document databases are growing

exponentially, resulting in huge digital repositories. Organizing

and searching these documents manually is increasingly costly

and time consuming. With the rapid growth, biomedical literature

has been the subject of intensive information retrieval and

machine learning investigations throughout past decades. Text

categorization is one challenging research area where text

documents are categorized using predefined labels based on their

content. Applying improved text categorization techniques to the

biomedical databases is essential to overcome the information

overload problem and to facilitate indexing, filtering and

managing the growing number of articles in those databases.

Most of the existing text categorization techniques use a

vector representation of documents. In the vector space model,

key entities and concepts are identified from text and used as

features. The disadvantage of the vector representation is the lack

of semantic relationships among key entities and concepts in the

text. Recently, graph mining and graph modeling techniques have

begun to gain popularity in modeling complex data such as

protein sequences and structures and social networks [1]. The

advantage of graph modeling is the use of “rich” semantic

representation of relationships among key entities and concepts in

a text and hence may yield improved results when classifying

documents.

In addition, kernel functions for graphs and other structured

data have garnered particular interest. In this work we have

designed a customized kernel function based on set matching to

compute the similarity between document graphs. This kernel

decomposes the similarity problem into two components: 1)

matching concept terms encoded as nodes in a document graph,

and 2) computing the overall similarity of the edges in one

document graph to the edges in another. This approach will

evaluate two document graphs as similar if they share both a large

number of concept terms as well as the same relationships

between those terms. The choice of this kernel function was made

with computational simplicity in mind, as well as ease of dealing

with disconnected graphs.

Since the reliability of the kernel function in measuring

document similarity is directly dependent on the methods used to

encode the document graphs, in this work we have paid particular

attention to representations that provide consistent descriptions

across many different documents.

Several approaches to text categorization using graph

representations have been explored as outlined in section 2. The

novelty of our approach lies primarily in the methods used to

generate the nodes and edges for each document graph. While

previous works have focused on nodes that encode specific words

or sentences, the approach described here focuses on so-called

concept graphs that encode specific biomedical concepts as nodes

in a document graph. These concept nodes use a regular and

controlled vocabulary for describing documents, and avoid issues

with vagaries and inconsistencies in the terms used by various

papers. By using such a controlled vocabulary we ensure that

matches between concept nodes reliably indicate similarities

between documents.

The proposed technique is based on the extension of our

previous study of representing full-text articles as a graph [22].

Different from our previous work, in this paper, we assign weights

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

BIOKDD’12, August 12, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1552-4 …$15.00.

to edge based on concept relation. Generation of edges between

concept nodes follows an approach that encodes the relationships

between the concept terms presented in a document graph. These

relationships essentially denote containment between different

concept terms. For example, if the concept terms “Protein” and

“H SP90” are both present in a document, then an edge will be

added between them indicating that “HSP90” is a child of

“Protein” since the former is a more specific case of the latter.

The techniques described above have been applied to a set of

biomedical texts collected from BioMed Central. The documents

are open access publications and are categorized by the journal

they were published in. The biomedical terms extracted from the

text can be mapped to concepts from the Unified Medical

Language System (UMLS) database. UMLS is a comprehensive

repository of biomedical knowledge and is accessed by many data

mining applications. It is provided by the National Library of

Medicine [2]. The procedure of building the concept graph is

similar to how humans intuitively identify the topic of a certain

text by reading. We usually spot keywords in the text, recognize

the concepts behind these keywords, and relate them to other

identified concepts that we find in the text. Once the overall

picture is clear, we categorize the text into a class that is

commonly seen in the literature. Our proposed method involves a

combination of concept identification and graph mining

techniques to classify biomedical documents. The proposed

method is evaluated on several text categorization problems and

compared to existing document classification methods utilizing

text-based features. The results demonstrate an improvement in

classification accuracy when using the concept graphs compared

to using only the unstructured textual features retrieved from the

selected documents. We have compared the affect of making use

of different parameters associated with the concept term on the

classification performance. We have also provided results

comparing the use of concepts with and without relationship

edges.

The rest of the paper is organized as follows. In Section 2 we

define text categorization and refer to some of the related. In

Section 3 we describe the concept graph building and

classification algorithm. In Section 4 we describe the

experimental data sets, the model construction and evaluation, and

the analysis of the results. Section 5 concludes the paper with

discussion on the performance of the proposed method.

2. RELATED WORK
Text categorization is the automatic process of sorting

documents into classes or groups based on their content. Text

categorization has attracted significant research interest in

information science [3]. The applications of text categorization

include indexing and classifying of scientific publications, email

filtering, literature based discovery, and finding relationships

among biomedical entities. The success of a text categorization

application is based on the efficiency and accuracy of the

underlying information retrieval and machine learning techniques

used.

Several text categorization techniques have been proposed to

automate the manual process of organizing and searching

documents. One of the popular techniques is the Naïve Bayesian

approach. The Naïve Bayesian probabilistic approach was

suggested for automatic indexing of documents and is shown to

be straightforward but surprisingly efficient in terms of

classification [4]. It is assumed that the extracted feature words

are independent and therefore Bayes’ theorem can be used in the

classification algorithm.

Graphs have also been used to categorize documents based

on graph matching [5]. Complex structures such as documents

can be represented as graphs where nodes represent textual or

other document features, and edges represent relationships

between those features. The addition of relationship edges to

describe documents can create a much higher-dimensional feature

space, thus allowing for more nuanced and potentially useful

embeddings of the documents.

 The relations used to connect graph nodes can be as diverse

as the applications. [6] proposes a graph representation for

document summarization tasks. They use a thesaurus and

association rules to connect key phrases in the text. [7] also uses

graphs to represent documents for summarization. They use 3

graphs to capture word-word, word-sentence, and sentence-

sentence relationships in the text. They then compute word and

sentence saliency scores to rank their results.

As for text categorization, there have been some attempts

that use graph representations and graph mining to enhance

feature representation and selection. In [8], 3 different data sets

were used for classification experiments each having its own

representation of relationships between node objects in a graph.

Co-authors were used to link scientific publications, actors to link

movies, and page hyperlinks to link Wikipedia documents.

Weighted frequent subgraphs were used in [9] to construct

effective feature vectors for classification and to overcome the

computation overhead that is associated with graph structures.

[10] uses exact and inexact graph matching as well as substructure

pruning and ranking to optimize classification and compare their

result to a Naïve Bayesian classifier. [11] attempts to exploit the

linguistic syntactic and semantic characteristics of phrases in text.

They encode phrases as graphs and use a substructure and pattern

discovery algorithm for classification.

A common preprocessing used for graph classification is

projecting the graph onto a kernel space using a kernel function.

One possible kernel function can be defined as an inner product

between two graphs and must be positive semi-definite and

symmetric.

Such a function embeds graphs or any other objects into a

Hilbert space, and is termed a Mercer kernel from Mercer's

theorem. Kernel functions can enhance classification in two ways:

first, by mapping vector objects into higher dimensional spaces;

second, by embedding non-vector objects in an implicitly defined

space.

Kernel functions for graphs have received much attention

recently. The simplest kernels are defined in terms of set

operations between nodes and edges. Some more sophisticated

developments include kernels based on comparing simple

structures such as paths between two graphs such as the shortest

path [12], marginalized [13]and spectrum [14] kernels, as well as

cycles [15]. Other kernels rely on more complicated structure

comparisons such as between subtrees [16] and subgraphs [17].

Some rely on direct matching of graph substructures [18]. String

kernels were used in text classification in [19]. The feature space

was generated using all string subsequences and the kernel

measured the similarity of documents based on the similarity of

those subsequences of strings. [5] used a semantic kernel that

incorporates Wikipedia background knowledge to enrich the

document representation. They achieved improved accuracy in

document classification when compared to traditional bag-of-

words representation.

3. THE ALGORITHM
Our algorithm consists of two major components. The first is

the graph generation part which is based on a named entity

recognition (NER) module and a concept identification module.

The second is the application of a graph kernel function to

compute the similarity between the generated graphs and a kernel

classifier to discriminate between papers given their embedding in

the kernel space.

Figure 1 shows the data flow of the procedure of extracting

concepts and relations as well as feeding them to a graph kernel

function for text categorization. In brief, the process is as follows:

first, a set of biomedical articles are selected from BioMed

Central; next, biomedical concepts are extracted from the

documents and mapped to concepts from the UMLS database;

concept relationships are then extracted and graphs are

constructed consisting of nodes representing concepts and edges

representing concept relationships; finally, the concept graphs are

used to compute a kernel matrix.

The overall process consists of two phases: 1) Input Graph

Construction and 2) Classifier Learning and Output. Each phase is

described in details in sections 3.1 and 3.2 below, beginning with

graph construction.

Figure 1. System Overview

3.1. Graph Construction and Processing

The graph construction phase begins by collecting a set of

published articles from different journals of BioMed Central. The

articles were grouped by the journal in which they were

published. The journal name here represents a high level category

of biomedical-related disciplines and thus is used as the class

label for the different sets of documents. The text content is then

used to construct a set of concept graphs, where each document is

represented by one graph.

As we mentioned earlier, each concept graph consists of a set

of concept nodes and relation edges. To extract the concepts from

the text, we use LingPipe’s [20] named entity recognition (NER)

module which is trained on the Genia corpus [21]. To ensure the

concepts correspond to a controlled set of vocabulary, we attempt

to map them to the UMLS database. UMLS is a comprehensive

biomedical ontology of concepts provided by the National Library

of Medicine [2]. Mapping the named entities into UMLS concepts

involves comparing all potential substrings of the key phrases

extracted by NER since those are sometimes longer than the

concepts in UMLS and contain additional adjectives or terms.

The named entity “5 and 10 lM parthenolide” for example doesn’t

exist as a concept but the substring “parthenolide” does.

Mapping the biomedical entities into predefined concepts

also allows us to look for possible relations among them within

UMLS. A concept string might refer to multiple concepts with

different meanings whereas a concept unique identifier (CUI)

refers to only one concept associated with one or more string

descriptors that might slightly vary because of the different

vocabulary sources merged in UMLS.

For each text document we create a new Concept Graph and

add the mapped concepts as nodes. The graph nodes hold the

string values of each concept and the corresponding CUIs. The

multiple CUIs are implicitly disambiguated by possible relations

that might be added to the graph since edge weights are also used

in weighting nodes. For each pair of nodes, we attempt to find a

relation in UMLS and add it as an edge between the nodes if it

exists. The available relations are of semantic nature some of

which are synonym, parent-child, and sibling relationships. Figure

2 shows a sample text and the corresponding concept graph with

the extracted nodes and edges.

To weight the concepts before being fed to the classifier, we

use the following three weight components:

1. cf: The concept occurrence frequency in the text document.

2. idfw: The inverse document frequency weight of a concept:











)log(

)log(
1

N

idf
idfw i

i

where idfi is the number of documents term i occurs in, and N is

the total number of documents indexed. This weight is similar to

the traditional inverse document frequency (IDF) measure except

that the index is built beforehand only once using a fixed dataset

of over 20,000 PubMed documents spanning different topics. This

weight ensures common biomedical concepts are given lower

weights due to their lower discriminatory value. idfw is a value

between 0 and 1 where lower values indicate that the concept term

is a very common one in the biomedical domain.

3. cw: The connectivity weight of a concept node. This weight

quantifies the importance of a concept in terms of its relationships

to other concepts in the text. In other words, it is a measure of the

node connectivity within the graph. It is calculated as the

magnitude of the relations weights vector for a certain concept:


n

icfcw
1

2

where n is the number of concepts related to concept i and cfi is

the frequency of a related concept i. The value of cw not only

captures how much a concept is related to other concepts but also

how much it is related to important concepts of high frequencies

in a document.

3.2. Classifier Learning with Kernels

After transforming a set of papers into a set of graphs, a

graph kernel function is applied to compute the similarity between

all pairs of paper graphs, and the resulting kernel matrix is used

for classification. A simple set-based kernel is used to measure

concept graph similarity based on the number of shared nodes and

number of edges with matching endpoints. There are a couple

properties of these concept graphs that make a set-based kernel

function attractive. The first reason is that the set computations

used are easily implemented and understood, leading to a kernel

function that is easy to interpret, which results in a greater

confidence in producing reliable measures of graph similarity. The

second reason is that many of the concept graphs are disconnected

or sparse, with many more nodes than edges, which can pose

problems for some graph mining algorithms. By decomposing the

graphs into sets of nodes and edges this issue is eliminated.

The kernel between two concept graphs (concept graph

kernel) is defined as the sum of two components, a kernel between

edges (edge kernel KE), and a kernel between nodes (node kernel

KN):

y)(x,K+y)(x,K=y)K(x, EN

In this paper, we investigate the utility of using the node

kernel, the edge kernel, and the kernel between two concept

graphs.

 The kernel between the nodes of two concept graphs x and y

is defined as the weighted ratio of the nodes intersecting between

two graphs to the union of the nodes in the two graphs.






i j ijiji

iji

N
NwNNINwNw

NwNNI
=y)(x,K

)()()()(

)()(

Here, i and j are indices having the value 1,2…nx and 1,2….ny

respectively, where nx and ny are the number of nodes in graph x

and graph y. Ni and Nj are the node concept terms in graph x and

y respectively, and w(Ni) or w(Nj) represents the weight allotted to

the node concept term Ni and Nj. The weight for each node

concept term is either the frequency of the node, the inverse of the

inverse document frequency, the connectivity weights or a

combination of the above three parameters. I is the indicator

function which holds the value 1 if Ni is equal to Nj and zero

otherwise.

The kernel between edges is defined as sum of all pairwise

similarities between edges in one concept graph, and each edge in

the other:


i j

jeE)E,(EK=y)(x,K i

Figure 2. Sample text and corresponding graph

where i and j are indices from 1 to the number of edges in graph x

and y respectively. Ei and Ej are the ith and i edges of graph x and

y. The set of such similarities forms a bipartite graph, where

nodes in one partition correspond to edges in one concept graph,

and nodes in the other partition correspond to edges in the other

concept graph. The set of bipartite edges correspond to

similarities between nodes in each partition.

The similarity between two edges is calculated via yet

another kernel similar to the node kernel, defined as:


  



2,1 2,1

i
)()()()(

)()(

l m lmlml

lml
je

NwNNINwNw

NwNNI
=)E,(EK

where: Ei is an edge in graph x and Ej is an edge in graph y.

Each edge forms a connection between the nodes N1 and N2.

Once the kernel between all graphs is computed, the graphs

are entered into a kernel matrix. This matrix can then be used in a

kernel-based classifier to make predictions on new data. We have

used support vector machines to classify the data once the kernels

were obtained.

4. EXPERIMENTAL STUDY
In this paper, we utilize two different sets of data to show

three points: 1) the performance of concept graph methods vs.

text-based methods, 2) the utility of different weight combinations

assigned to the nodes, and 3) the performance difference between

using document concepts for classification with and without

relationship edges.

4.1. Dataset

The two data sets consist of collections of biomedical

publications collected from a set of journals of BioMed Central.

The articles are grouped by the journal they were published in and

the journal names are used as the classes for prediction by the

trained classification model. Table 1 shows the class labels and

number of samples for each data set. In total, the first set contains

81 documents and the second contains 100 documents.

Table 1: Training datasets

Data set 1

Label Class Samples

A Aesthetic Plastic Surgery 9

B Aging Cell 9

C AIDS and Behavior 6

D Angiogenesis 7

E Apoptosis 15

F Gastrointestinal Surgery 22

G Hematopathology 13

Data set 2

Label Class Samples

A Cardiovasc_Disord 12

B Gastroenterol 24

C Genomics 24

D Musculoskelet_Disord 14

E Pregnancy_Childbirth 9

F Psychiatry 17

4.2. Model Construction

Once the graphs corresponding to queried papers are

constructed and the edge relationships and node concept labels

have been mapped to integer labels, a kernel matrix of similarities

between all the graphs can be computed. The kernel used was

first normalized before actually being used for the training

purposes.

jjii

ij

ij
KK

K
KN




Here, KNij is the single term in the normalized kernel matrix

KN located in ith row and jth column. K is the un-normalized

kernel matrix, and Kij is a term in matrix K with i and j specifying

the location of the term. K can refer to node kernel, edge kernel or

concept graph kernel depending on which kernel is being used.

In this paper, we first investigate the utility of using concept

graphs over the text based approach. Different values of w(Ni)

that were tried for the calculation of the node and the edge kernel

were concept occurrence frequency (cf), reciprocal of inverse

document frequency weight (1/idfw), concept weights (cw),

cf×(1/idfw), cf×cw, (1/idfw)×cw and cf×(1/idfw)×cw. We also

explored the case where all w(Ni) was set to 1. We study which of

the values of w(Ni) mentioned above gives us the best

performance. We also study if inclusion of edges gives any boost

in performance or not.

Since dataset 1 had seven different classes, and dataset 2 had

six different classes, and support vector machine is a binary

classifier, we binarized the problem by attempting to classify just

one class versus all others.

We obtained our training and testing data sets using 10-fold

cross-validation. We used another 10-fold cross-validation in the

training data set to select model parameters. The only parameter

that we optimized was the weight ratio wr of the positive and

negative samples. We used grid search with the range of [10-3,

101] and cross validation to optimize wr. Once we had the optimal

value of wr, we used all training samples to build a single model

and applied the model to the testing data set.

4.3. Model Evaluation

Each trained model was evaluated in the testing data set. We

collected accuracy, precision, recall and the F1 score for each

case. We report the average value of the metrics over the 10 cross-

validation trials. Accuracy is defined as (TP+TN)/S where TP

stands for number of true positives, TN stands for number of true

negatives and S is the total number of testing samples. Precision is

defined as the ratio of true positives to the total number of

positives predicted by the classifier (Precision=TP/(TP+FP)

where FP is the number of false positives). Recall is defined as

the ratio of the number of true positives to the total number of

positives present in the test dataset (Recall= TP/(TP+FN) where

FN is the number of false negatives). The F1 score is defined as

the inverse of the arithmetic mean of the reciprocal values of

precision and recall.

recallprecision

recallprecision
scoreF






2
1

We used F1 score because it is designed for imbalanced data

sets as we are studying here. In our experimental study, we report

the F1 score only.

4.4. Analysis of Results
A set of concept graphs were first extracted from the journal

articles which were intended to be classified according to their

journal. Weighted kernels were built for the concept graphs using

different values used for weights, and the kernels were used to

classify the two datasets.

 We first used abstracts of the papers used in the dataset to

classify the data. To this end, we used Naïve Bayes classifier

since Naïve Bayes is commonly used for text classification. Also,

Naïve Bayes assumes all features are conditionally independent

given the class, which is a safe assumption to make when the

dimensionality of the data is large. In text classification, the

dimensionality of data is often found to be large. We observed

that for both dataset 1 and dataset 2, when we used Naïve Bayes

classifier, the classifier classified every entry as one class for all

the labels to be classified. Thus, the precision did not exist.

However, when we used concept graphs, the classifier did some

work of classifying, and hence we got a value for the F1 score.

Clearly, the use of concept graph outperformed the conventional

text based classification using Naïve Bayes.

We tried three different parameters for the value of weights

in the kernels w(Ni). The three parameters were concept term

frequency cf, inverse document frequency idfw, and the

connectivity weight cw. We also evaluated the case where we did

not use any of above parameters, or assigned the value 1 to w(Ni).

We refer to this as plain kernel. Table 2 shows the results when

using the normalized node kernels weighted by the three

parameters. The values reported are the F1 scores for the test

results. It is interesting to see that the plain kernel outperforms

the other kernels in 7 out of the 13 cases. This result is quite

interesting and may be due to the fact that the number of concept

terms is quite large, and hence, their occurrence in the papers is

quite sparse. Thus, the concept frequencies, the inverse document

frequencies and the connectivity weights have little effect on the

kernels.

Table 2: The performance of weighted node kernels.

The weights used are (plain), concept frequencies cf,

inverse document frequencies idf, and connectivity

weights cw. The values reported are the F1 scores.

 Label Plain cf 1/idfw cw

Data set 1 A NaN 0.095 0.407 NaN

B 0.191 0.162 0.258 NaN

C 0.090 0.103 0.083 0.200

D 0.111 0.109 0.053 0.053

E 0.258 0.262 NaN 0.095

F 0.462 0.304 0.203 0.296

G 0.234 NaN 0.054 NaN

Data set 2 A 0.298 0.093 0.156 0.188

B 0.340 0.286 0.312 0.238

C 0.315 0.261 0.333 0.234

D 0.316 0.095 0.197 0.103

E NaN 0.174 0.208 0.173

F 0.273 0.215 0.066 0.209

It seems that the edges of the graphs should also play an

important role in the classification as the edges describe the

relationships between the concept nodes. In this study, we do not

make use of the type of relationship that exists between the

concept terms. Rather, we just use the fact that if a relationship

exists or not. The results are presented in Table 3, which shows

the node kernel, edge kernel and the concept graph kernel only

evaluated for the value of w(Ni) equal to one. We did evaluate

these kernels for other value of w(Ni) too, but only show the

results for w(Ni)=1 because this seemed to work the best for the

node kernels. As can be seen in Table 3, using just the node

kernel did perform better in eight of the 13 cases. However, this

was not the case when using other values of w(Ni).

When using w(Ni) equal to cf or cf×(1/idfw), the edge kernel

outperforms the node and concept weight kernel majority of the

time (6 out of 13 and 7 out of 13 times respectively). When w(Ni)

is set to cf×(1/idfw) or cf×cw, both the nodes and the concept

graph kernel show a better performance than others 5 out of 13

times. Setting w(Ni) to be cf×cw×(1/idfw) produces a tie between

node kernels performance and edge kernel performance. The

node kernels solely outperformed others when w(Ni) was either

set to 1, cf or 1/idfw. Hence, we can say that using just the node

kernel outperformed using just the edge kernel or the concept

graph kernel in most cases.

Table 3: The performance of Node kernel, Edge kernel

and Concept graph kernel. The value of w(Ni) is one.

The values reported are F1 scores.

 Labels Node

kernel

Edge

kernel

Concept

graph

kernel

Data set 1 A NaN 0.094 0.120

B 0.191 0.140 0.177

C 0.090 0.118 0.167

D 0.111 0.111 0.146

E 0.258 NaN 0.143

F 0.462 0.171 0.362

G 0.234 0.227 0.206

Data set 2 A 0.298 0.094 NaN

B 0.340 0.140 0.267

C 0.315 0.118 0.333

D 0.316 0.111 0.078

E NaN NaN 0.148

F 0.273 0.171 0.152

5. CONCLUSION

Categorizing biomedical text is a challenging problem due to

the huge number of articles published every year. In this study, we

propose a promising approach to text categorization based on

building concept graphs to represent documents and classifying

them using an SVM classifier. The results show that the rich

representation of documents in form of graphs does significantly

improve the classification performance when compared to

traditional Naïve Bayes method. It was also interesting to note

that in some cases addition of relationships (edges) to the

concepts did improve the classification performance but in most

cases, using just the concept terms were sufficient. However, we

did not utilize the type of relationship that occurred between the

concept terms, which might have contributed in deteriorating the

performance.

Acknowledgments
This work is partially supported by the KU Specialized Chemistry

Center (NIH award U54 HG005031). In addition, partial support

for this research was provided by the National Science

Foundation under grants DUE-0434581 and DUE-0434998, by

the Institute for Museum and Library Services under grant LG-02-

04-0002-04.

References
[1] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link

prediction using supervised learning,” in SDM’06: Workshop on

Link Analysis, Counter-terrorism and Security, 2006.

[2] D. A. Lindberg, B. L. Humphreys, and A. T. McCray,

“The Unified Medical Language System.,” Methods of

information in Medicine, vol. 32, no. 4, p. 281, 1993.

[3] F. Sebastiani, “Machine learning in automated text

categorization,” ACM computing surveys (CSUR), vol. 34, no. 1,

pp. 1–47, 2002.

[4] M. E. Maron, “Automatic indexing: an experimental

inquiry,” Journal of the ACM (JACM), vol. 8, no. 3, pp. 404–417,

1961.

[5] P. Wang and C. Domeniconi, “Building semantic

kernels for text classification using wikipedia,” in Proceeding of

the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2008, pp. 713–721.

[6] Y. M. Chen, X. L. Wang, and B. Q. Liu, “Multi-

document summarization based on lexical chains,” in Proceedings

of the 2005 international conference on machine learning and

cybernetics, 2005, pp. 1937–1942.

[7] X. Wan, J. Yang, and J. Xiao, “Towards an iterative

reinforcement approach for simultaneous document

summarization and keyword extraction,” in ANNUAL MEETING-

ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2007,

vol. 45, p. 552.

[8] R. Angelova and G. Weikum, “Graph-based text

classification: learn from your neighbors,” in Proceedings of the

29th annual international ACM SIGIR conference on Research

and development in information retrieval, 2006, p. 492.

[9] C. Jiang, F. Coenen, R. Sanderson, and M. Zito, “Text

Classification using Graph Mining-based Feature Extraction,”

Research and Development in Intelligent Systems XXVI, pp. 21–

34.

[10] M. Arey and S. Chakravarthy, “InfoSift: Adapting

Graph Mining Techniques for Text Classification,” in

Proceedings of the Eighteenth International FLAIRS Conference,

2005.

[11] K. R. Gee and D. J. Cook, “Text Classification Using

Graph-Encoded Linguistic Elements,” in Proc. of the 18th Intl.

FLAIRS Conf, 2005.

[12] K. M. Borgwardt and H. P. Kriegel, “Shortest-path

kernels on graphs,” 2005.

[13] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized

kernels between labeled graphs,” in MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE-, 2003,

vol. 20, p. 321.

[14] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum

kernel: A string kernel for SVM protein classification,” in

Proceedings of the Pacific Symposium on Biocomputing, 2002,

vol. 7, pp. 566–575.

[15] T. Horváth, T. G\ärtner, and S. Wrobel, “Cyclic pattern

kernels for predictive graph mining,” in Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery

and data mining, 2004, pp. 158–167.

[16] P. Mahé and J. P. Vert, “Graph kernels based on tree

patterns for molecules,” Machine learning, vol. 75, no. 1, pp. 3–

35, 2009.

[17] J. Huan, D. Bandyopadhyay, J. Prins, J. Snoeyink, A.

Tropsha, and W. Wang, “Distance-based identification of

structure motifs in proteins using constrained frequent subgraph

mining,” in Computational systems bioinformatics: CSB2006

conference proceedings, Stanford CA, 14-18 August 2006, 2006,

vol. 4, p. 227.

[18] H. Fr\öhlich, J. K. Wegner, F. Sieker, and A. Zell,

“Optimal assignment kernels for attributed molecular graphs,” in

Proceedings of the 22nd international conference on Machine

learning, 2005, pp. 225–232.

[19] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,

and C. Watkins, “Text classification using string kernels,” The

Journal of Machine Learning Research, vol. 2, pp. 419–444,

2002.

[20] “LingPipe: Named Entity Tutorial.” [Online].

Available:http://alias-i.com/lingpipe/demos/tutorial/ne/read-

me.html. [Accessed: 31-Jul-2011].

[21] J. D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii, “GENIA

corpus-a semantically annotated corpus for bio-textmining,”

Bioinformatics-Oxford, vol. 19, no. 1, pp. 180–182, 2003.

[22] S. Bleik, M. Song, A Smalter, J. Huan, G. Lushington

"CGM: A biomedical text categorization approach using concept

graph mining", Bioinformatics and Biomedicine Workshop, 2009.

BIBMW 2009, page 38-43.

