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ABSTRACT 

Recent work using graph representations for text 

categorization has shown promising performance over 

conventional bag-of-words representation of text 

documents. In this paper we investigate a graph 

representation of texts for the task of text categorization. In 

our representation we identify high level concepts extracted 

from a database of controlled biomedical terms and build a 

rich graph structure that contains important concepts and 

relationships. This procedure ensures that graphs are 

described with a regular vocabulary, leading to increased 

ease of comparison. We then classify document graphs by 

applying a set-based graph kernel that is intuitively sensible 

and able to deal with the disconnectedness of the 

constructed concept graphs. We compare this approach to 

standard approaches using non-graph, text-based features. 

We also do a comparison amongst different kernels that can 

be used to see which performs better. 

Categories and Subject Descriptors 

Dataming Methodologies: Biomedical text mining 
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1. INTRODUCTION 
Biomedical electronic document databases are growing 

exponentially, resulting in huge digital repositories. Organizing 

and searching these documents manually is increasingly costly 

and time consuming. With the rapid growth, biomedical literature 

has been the subject of intensive information retrieval and 

machine learning investigations throughout past decades. Text 

categorization is one challenging research area where text 

documents are categorized using predefined labels based on their 

content. Applying improved text categorization techniques to the 

biomedical databases is essential to overcome the information 

overload problem and to facilitate indexing, filtering and 

managing the growing number of articles in those databases. 

Most of the existing text categorization techniques use a 

vector representation of documents. In the vector space model, 

key entities and concepts are identified from text and used as 

features. The disadvantage of the vector representation is the lack 

of semantic relationships among key entities and concepts in the 

text. Recently, graph mining and graph modeling techniques have 

begun to gain popularity in modeling complex data such as 

protein sequences and structures and social networks [1]. The 

advantage of graph modeling is the use of “rich” semantic 

representation of relationships among key entities and concepts in 

a text and hence may yield improved results when classifying 

documents.  

In addition, kernel functions for graphs and other structured 

data have garnered particular interest.  In this work we have 

designed a customized kernel function based on set matching to 

compute the similarity between document graphs. This kernel 

decomposes the similarity problem into two components: 1) 

matching concept terms encoded as nodes in a document graph, 

and 2) computing the overall similarity of the edges in one 

document graph to the edges in another. This approach will 

evaluate two document graphs as similar if they share both a large 

number of concept terms as well as the same relationships 

between those terms. The choice of this kernel function was made 

with computational simplicity in mind, as well as ease of dealing 

with disconnected graphs. 

Since the reliability of the kernel function in measuring 

document similarity is directly dependent on the methods used to 

encode the document graphs, in this work we have paid particular 

attention to representations that provide consistent descriptions 

across many different documents. 

Several approaches to text categorization using graph 

representations have been explored as outlined in section 2. The 

novelty of our approach lies primarily in the methods used to 

generate the nodes and edges for each document graph. While 

previous works have focused on nodes that encode specific words 

or sentences, the approach described here focuses on so-called 

concept graphs that encode specific biomedical concepts as nodes 

in a document graph. These concept nodes use a regular and 

controlled vocabulary for describing documents, and avoid issues 

with vagaries and inconsistencies in the terms used by various 

papers. By using such a controlled vocabulary we ensure that 

matches between concept nodes reliably indicate similarities 

between documents. 

The proposed technique is based on the extension of our 

previous study of representing full-text articles as a graph [22]. 

Different from our previous work, in this paper, we assign weights 
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to edge based on concept relation. Generation of edges between 

concept nodes follows an approach that encodes the relationships 

between the concept terms presented in a document graph. These 

relationships essentially denote containment between different 

concept terms.  For example, if the concept terms “Protein” and 

“H SP90” are both present in a document, then an edge will be 

added between them indicating that “HSP90” is a child of 

“Protein” since the former is a more specific case of the latter. 

The techniques described above have been applied to a set of 

biomedical texts collected from BioMed Central. The documents 

are open access publications and are categorized by the journal 

they were published in. The biomedical terms extracted from the 

text can be mapped to concepts from the Unified Medical 

Language System (UMLS) database. UMLS is a comprehensive 

repository of biomedical knowledge and is accessed by many data 

mining applications. It is provided by the National Library of 

Medicine [2]. The procedure of building the concept graph is 

similar to how humans intuitively identify the topic of a certain 

text by reading. We usually spot keywords in the text, recognize 

the concepts behind these keywords, and relate them to other 

identified concepts that we find in the text. Once the overall 

picture is clear, we categorize the text into a class that is 

commonly seen in the literature. Our proposed method involves a 

combination of concept identification and graph mining 

techniques to classify biomedical documents. The proposed 

method is evaluated on several text categorization problems and 

compared to existing document classification methods utilizing 

text-based features. The results demonstrate an improvement in 

classification accuracy when using the concept graphs compared 

to using only the unstructured textual features retrieved from the 

selected documents. We have compared the affect of making use 

of different parameters associated with the concept term on the 

classification performance.  We have also provided results 

comparing the use of concepts with and without relationship 

edges.   

The rest of the paper is organized as follows. In Section 2 we 

define text categorization and refer to some of the related. In 

Section 3 we describe the concept graph building and 

classification algorithm. In Section 4 we describe the 

experimental data sets, the model construction and evaluation, and 

the analysis of the results. Section 5 concludes the paper with 

discussion on the performance of the proposed method. 

 

2. RELATED WORK 
Text categorization is the automatic process of sorting 

documents into classes or groups based on their content. Text 

categorization has attracted significant research interest in 

information science [3]. The applications of text categorization 

include indexing and classifying of scientific publications, email 

filtering, literature based discovery, and finding relationships 

among biomedical entities. The success of a text categorization 

application is based on the efficiency and accuracy of the 

underlying information retrieval and machine learning techniques 

used. 

Several text categorization techniques have been proposed to 

automate the manual process of organizing and searching 

documents.  One of the popular techniques is the Naïve Bayesian 

approach. The Naïve Bayesian probabilistic approach was 

suggested for automatic indexing of documents and is shown to 

be straightforward but surprisingly efficient in terms of 

classification [4]. It is assumed that the extracted feature words 

are independent and therefore Bayes’ theorem can be used in the 

classification algorithm.  

Graphs have also been used to categorize documents based 

on graph matching [5].  Complex structures such as documents 

can be represented as graphs where nodes represent textual or 

other document features, and edges represent relationships 

between those features. The addition of relationship edges to 

describe documents can create a much higher-dimensional feature 

space, thus allowing for more nuanced and potentially useful 

embeddings of the documents.  

  The relations used to connect graph nodes can be as diverse 

as the applications.  [6] proposes a graph representation for  

document summarization tasks. They use a thesaurus and 

association rules to connect key phrases in the text. [7] also uses 

graphs to represent documents for summarization. They use 3 

graphs to capture word-word, word-sentence, and sentence-

sentence relationships in the text. They then compute word and 

sentence saliency scores to rank their results.  

As for text categorization, there have been some attempts 

that use graph representations and graph mining to enhance 

feature representation and selection. In [8], 3 different data sets 

were used for classification experiments each having its own 

representation of relationships between node objects in a graph. 

Co-authors were used to link scientific publications, actors to link 

movies, and page hyperlinks to link Wikipedia documents. 

Weighted frequent subgraphs were used in [9] to construct 

effective feature vectors for classification and to overcome the 

computation overhead that is associated with graph structures. 

[10] uses exact and inexact graph matching as well as substructure 

pruning and ranking to optimize classification and compare their 

result to a Naïve Bayesian classifier. [11] attempts to exploit the 

linguistic syntactic and semantic characteristics of phrases in text. 

They encode phrases as graphs and use a substructure and pattern 

discovery algorithm for classification.  

A common preprocessing used for graph classification is 

projecting the graph onto a kernel space using a kernel function.  

One possible kernel function can be defined as an inner product 

between two graphs and must be positive semi-definite and 

symmetric. 

Such a function embeds graphs or any other objects into a 

Hilbert space, and is termed a Mercer kernel from Mercer's 

theorem. Kernel functions can enhance classification in two ways: 

first, by mapping vector objects into higher dimensional spaces; 

second, by embedding non-vector objects in an implicitly defined 

space.  

Kernel functions for graphs have received much attention 

recently.  The simplest kernels are defined in terms of set 

operations between nodes and edges. Some more sophisticated 

developments include kernels based on comparing simple 

structures such as paths between two graphs such as the shortest 

path [12], marginalized [13]and spectrum [14] kernels, as well as 

cycles [15]. Other kernels rely on more complicated structure 

comparisons such as between subtrees [16] and subgraphs [17].  

Some rely on direct matching of graph substructures [18]. String 

kernels were used in text classification in [19]. The feature space 

was generated using all string subsequences and the kernel 

measured the similarity of documents based on the similarity of 

those subsequences of strings. [5] used a semantic kernel that 

incorporates Wikipedia background knowledge to enrich the 

document representation. They achieved improved accuracy in 

document classification when compared to traditional bag-of-

words representation. 

 



3. THE ALGORITHM 
Our algorithm consists of two major components. The first is 

the graph generation part which is based on a named entity 

recognition (NER) module and a concept identification module. 

The second is the application of a graph kernel function to 

compute the similarity between the generated graphs and a kernel 

classifier to discriminate between papers given their embedding in 

the kernel space. 

Figure 1 shows the data flow of the procedure of extracting 

concepts and relations as well as feeding them to a graph kernel 

function for text categorization. In brief, the process is as follows: 

first, a set of biomedical articles are selected from BioMed 

Central; next, biomedical concepts are extracted from the 

documents and mapped to concepts from the UMLS database; 

concept relationships are then extracted and graphs are 

constructed consisting of nodes representing concepts and edges 

representing concept relationships; finally, the concept graphs are 

used to compute a kernel matrix. 

The overall process consists of two phases: 1) Input Graph 

Construction and 2) Classifier Learning and Output. Each phase is 

described in details in sections 3.1 and 3.2 below, beginning with 

graph construction. 

 
Figure 1. System Overview 

 

3.1. Graph Construction and Processing 
 
The graph construction phase begins by collecting a set of 

published articles from different journals of BioMed Central. The 

articles were grouped by the journal in which they were 

published. The journal name here represents a high level category 

of biomedical-related disciplines and thus is used as the class 

label for the different sets of documents. The text content is then 

used to construct a set of concept graphs, where each document is 

represented by one graph. 

As we mentioned earlier, each concept graph consists of a set 

of concept nodes and relation edges. To extract the concepts from 

the text, we use LingPipe’s [20] named entity recognition (NER) 

module which is trained on the Genia corpus [21].  To ensure the 

concepts correspond to a controlled set of vocabulary, we attempt 

to map them to the UMLS database. UMLS is a comprehensive 

biomedical ontology of concepts provided by the National Library 

of Medicine [2]. Mapping the named entities into UMLS concepts 

involves comparing all potential substrings of the key phrases 

extracted by NER since those are sometimes longer than the 

concepts in UMLS and contain additional adjectives or terms.  

The named entity “5 and 10 lM parthenolide” for example doesn’t 

exist as a concept but the substring “parthenolide” does.  

Mapping the biomedical entities into predefined concepts 

also allows us to look for possible relations among them within 

UMLS. A concept string might refer to multiple concepts with 

different meanings whereas a concept unique identifier (CUI) 

refers to only one concept associated with one or more string 

descriptors that might slightly vary because of the different 

vocabulary sources merged in UMLS.  

For each text document we create a new Concept Graph and 

add the mapped concepts as nodes. The graph nodes hold the 

string values of each concept and the corresponding CUIs. The 

multiple CUIs are implicitly disambiguated by possible relations 

that might be added to the graph since edge weights are also used 

in weighting nodes. For each pair of nodes, we attempt to find a 

relation in UMLS and add it as an edge between the nodes if it 

exists. The available relations are of semantic nature some of 

which are synonym, parent-child, and sibling relationships. Figure 

2 shows a sample text and the corresponding concept graph with 

the extracted nodes and edges. 

To weight the concepts before being fed to the classifier, we 

use the following three weight components:  

1. cf: The concept occurrence frequency in the text document.  

2. idfw: The inverse document frequency weight of a concept: 


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where idfi is the number of documents term i occurs in, and N is 

the total number of documents indexed. This weight is similar to 

the traditional inverse document frequency (IDF) measure except 

that the index is built beforehand only once using a fixed dataset 

of over 20,000 PubMed documents spanning different topics. This 

weight ensures common biomedical concepts are given lower 

weights due to their lower discriminatory value. idfw is a value 

between 0 and 1 where lower values indicate that the concept term 

is a very common one in the biomedical domain.   

3. cw: The connectivity weight of a concept node. This weight 

quantifies the importance of a concept in terms of its relationships 

to other concepts in the text. In other words, it is a measure of the 



node connectivity within the graph. It is calculated as the 

magnitude of the relations weights vector for a certain concept: 


n

icfcw
1

2
 

where n is the number of concepts related to concept i and cfi is 

the frequency of a related concept i. The value of cw not only 

captures how much a concept is related to other concepts but also 

how much it is related to important concepts of high frequencies 

in a document.  
 

3.2. Classifier Learning with Kernels 
 

After transforming a set of papers into a set of graphs, a 

graph kernel function is applied to compute the similarity between 

all pairs of paper graphs, and the resulting kernel matrix is used 

for classification. A simple set-based kernel is used to measure 

concept graph similarity based on the number of shared nodes and 

number of edges with matching endpoints. There are a couple 

properties of these concept graphs that make a set-based kernel 

function attractive. The first reason is that the set computations 

used are easily implemented and understood, leading to a kernel 

function that is easy to interpret, which results in a greater 

confidence in producing reliable measures of graph similarity. The 

second reason is that many of the concept graphs are disconnected 

or sparse, with many more nodes than edges, which can pose 

problems for some graph mining algorithms. By decomposing the 

graphs into sets of nodes and edges this issue is eliminated. 

The kernel between two concept graphs (concept graph 

kernel) is defined as the sum of two components, a kernel between 

edges (edge kernel KE), and a kernel between nodes (node kernel 

KN): 

y)(x,K+y)(x,K=y)K(x, EN  

In this paper, we investigate the utility of using the node 

kernel, the edge kernel, and the kernel between two concept 

graphs.   

 The kernel between the nodes of two concept graphs x and y 

is defined as the weighted ratio of the nodes intersecting between 

two graphs to the union of the nodes in the two graphs. 
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Here, i and j are indices having the value 1,2…nx and 1,2….ny 

respectively, where nx and ny are the number of nodes in graph x 

and graph y.  Ni and Nj are the node concept terms in graph x and 

y respectively, and w(Ni) or w(Nj) represents the weight allotted to 

the node concept term Ni and Nj.  The weight for each node 

concept term is either the frequency of the node, the inverse of the 

inverse document frequency, the connectivity weights or a 

combination of the above three parameters. I is the indicator 

function which holds the value 1 if Ni is equal to Nj and zero 

otherwise. 

The kernel between edges is defined as sum of all pairwise 

similarities between edges in one concept graph, and each edge in 

the other: 


i j
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Figure 2. Sample text and corresponding graph 

 
where i and j are indices from 1 to the number of edges in graph x 

and y respectively.  Ei and Ej are the ith and i edges of graph x and 

y.  The set of such similarities forms a bipartite graph, where 

nodes in one partition correspond to edges in one concept graph, 

and nodes in the other partition correspond to edges in the other 

concept graph. The set of bipartite edges correspond to 

similarities between nodes in each partition.  

The similarity between two edges is calculated via yet 

another kernel similar to the node kernel, defined as: 
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where: Ei is an edge in graph x and Ej is an edge in graph y.  

Each edge forms a connection between the nodes N1 and N2. 

Once the kernel between all graphs is computed, the graphs 

are entered into a kernel matrix.  This matrix can then be used in a 

kernel-based classifier to make predictions on new data. We have 

used support vector machines to classify the data once the kernels 

were obtained. 

 

4. EXPERIMENTAL STUDY 
In this paper, we utilize two different sets of data to show 

three points: 1) the performance of concept graph methods vs. 

text-based methods, 2) the utility of different weight combinations 

assigned to the nodes, and 3) the performance difference between 

using document concepts for classification with and without 

relationship edges. 

4.1. Dataset 

The two data sets consist of collections of biomedical 

publications collected from a set of journals of BioMed Central. 

The articles are grouped by the journal they were published in and 



the journal names are used as the classes for prediction by the 

trained classification model. Table 1 shows the class labels and 

number of samples for each data set. In total, the first set contains 

81 documents and the second contains 100 documents. 

 

Table 1: Training datasets 

 

Data set 1 

Label Class Samples 

A Aesthetic Plastic Surgery 9 

B Aging Cell 9 

C AIDS and Behavior 6 

D Angiogenesis 7 

E Apoptosis 15 

F Gastrointestinal Surgery 22 

G Hematopathology 13 

 

Data set 2 

Label Class Samples 

A Cardiovasc_Disord 12 

B Gastroenterol 24 

C Genomics 24 

D Musculoskelet_Disord 14 

E Pregnancy_Childbirth 9 

F Psychiatry 17 

 

 

4.2. Model Construction  
 

Once the graphs corresponding to queried papers are 

constructed and the edge relationships and node concept labels 

have been mapped to integer labels, a kernel matrix of similarities 

between all the graphs can be computed.  The kernel used was 

first normalized before actually being used for the training 

purposes.   

jjii

ij

ij
KK

K
KN


  

Here, KNij is the single term in the normalized kernel matrix 

KN located in ith row and jth column.  K is the un-normalized 

kernel matrix, and Kij is a term in matrix K with i and j specifying 

the location of the term. K can refer to node kernel, edge kernel or 

concept graph kernel depending on which kernel is being used.   

In this paper, we first investigate the utility of using concept 

graphs over the text based approach.  Different values of w(Ni) 

that were tried for the calculation of the node and the edge kernel 

were concept occurrence frequency (cf), reciprocal of inverse 

document frequency weight (1/idfw), concept weights (cw), 

cf×(1/idfw), cf×cw, (1/idfw)×cw and cf×(1/idfw)×cw.  We also 

explored the case where all w(Ni) was set to 1.  We study which of 

the values of w(Ni) mentioned above gives us the best 

performance.  We also study if inclusion of edges gives any boost 

in performance or not.   

Since dataset 1 had seven different classes, and dataset 2 had 

six different classes, and support vector machine is a binary 

classifier, we binarized the problem by attempting to classify just 

one class versus all others.   

We obtained our training and testing data sets using 10-fold 

cross-validation. We used another 10-fold cross-validation in the 

training data set to select model parameters. The only parameter 

that we optimized was the weight ratio wr of the positive and 

negative samples. We used grid search with the range of [10-3, 

101] and cross validation to optimize wr. Once we had the optimal 

value of wr, we used all training samples to build a single model 

and applied the model to the testing data set.  

 

4.3. Model Evaluation 
 

Each trained model was evaluated in the testing data set. We 

collected accuracy, precision, recall and the F1 score for each 

case. We report the average value of the metrics over the 10 cross-

validation trials. Accuracy is defined as (TP+TN)/S where TP 

stands for number of true positives, TN stands for number of true 

negatives and S is the total number of testing samples. Precision is 

defined as the ratio of true positives to the total number of 

positives predicted by the classifier (Precision=TP/(TP+FP) 

where FP is the number of false positives).  Recall is defined as 

the ratio of the number of true positives to the total number of 

positives present in the test dataset (Recall= TP/(TP+FN) where 

FN is the number of false negatives). The F1 score is defined as 

the inverse of the arithmetic mean of the reciprocal values of 

precision and recall.  

recallprecision

recallprecision
scoreF






2
1  

We used F1 score because it is designed for imbalanced data 

sets as we are studying here. In our experimental study, we report 

the F1 score only.  

 

4.4. Analysis of Results 
A set of concept graphs were first extracted from the journal 

articles which were intended to be classified according to their 

journal.  Weighted kernels were built for the concept graphs using 

different values used for weights, and the kernels were used to 

classify the two datasets.   

 We first used abstracts of the papers used in the dataset to 

classify the data.  To this end, we used Naïve Bayes classifier 

since Naïve Bayes is commonly used for text classification.  Also, 

Naïve Bayes assumes all features are conditionally independent 

given the class, which is a safe assumption to make when the 

dimensionality of the data is large.  In text classification, the 

dimensionality of data is often found to be large.  We observed 

that for both dataset 1 and dataset 2, when we used Naïve Bayes 

classifier, the classifier classified every entry as one class for all 

the labels to be classified.  Thus, the precision did not exist.  

However, when we used concept graphs, the classifier did some 

work of classifying, and hence we got a value for the F1 score.  

Clearly, the use of concept graph outperformed the conventional 

text based classification using Naïve Bayes. 

We tried three different parameters for the value of weights 

in the kernels w(Ni).  The three parameters were concept term 

frequency cf, inverse document frequency idfw, and the 

connectivity weight cw.  We also evaluated the case where we did 

not use any of above parameters, or assigned the value 1 to w(Ni).  

We refer to this as plain kernel.  Table 2 shows the results when 

using the normalized node kernels weighted by the three 



parameters.  The values reported are the F1 scores for the test 

results.  It is interesting to see that the plain kernel outperforms 

the other kernels in 7 out of the 13 cases.  This result is quite 

interesting and may be due to the fact that the number of concept 

terms is quite large, and hence, their occurrence in the papers is 

quite sparse.  Thus, the concept frequencies, the inverse document 

frequencies and the connectivity weights have little effect on the 

kernels.   

 

Table 2: The performance of weighted node kernels.  

The weights used are (plain), concept frequencies cf, 

inverse document frequencies idf, and connectivity 

weights cw.  The values reported are the F1 scores.   

 Label Plain cf 1/idfw cw 

Data set 1 A NaN 0.095 0.407 NaN 

B 0.191 0.162 0.258 NaN 

C 0.090 0.103 0.083 0.200 

D 0.111 0.109 0.053 0.053 

E 0.258 0.262 NaN 0.095 

F 0.462 0.304 0.203 0.296 

G 0.234 NaN 0.054 NaN 

Data set 2 A 0.298 0.093 0.156 0.188 

B 0.340 0.286 0.312 0.238 

C 0.315 0.261 0.333 0.234 

D 0.316 0.095 0.197 0.103 

E NaN 0.174 0.208 0.173 

F 0.273 0.215 0.066 0.209 

 

It seems that the edges of the graphs should also play an 

important role in the classification as the edges describe the 

relationships between the concept nodes.  In this study, we do not 

make use of the type of relationship that exists between the 

concept terms.  Rather, we just use the fact that if a relationship 

exists or not.  The results are presented in Table 3, which shows 

the node kernel, edge kernel and the concept graph kernel only 

evaluated for the value of w(Ni) equal to one.  We did evaluate 

these kernels for other value of w(Ni) too, but only show the 

results for w(Ni)=1 because this seemed to work the best for the 

node kernels.  As can be seen in Table 3, using just the node 

kernel did perform better in eight of the 13 cases.  However, this 

was not the case when using other values of w(Ni).   

When using w(Ni) equal to cf or cf×(1/idfw), the edge kernel 

outperforms the node and concept weight kernel majority of the 

time (6 out of 13 and 7 out of 13 times respectively).  When w(Ni) 

is set to cf×(1/idfw) or cf×cw, both the nodes and the concept 

graph kernel show a better performance than others 5 out of 13 

times.  Setting w(Ni) to be cf×cw×(1/idfw) produces a tie between 

node kernels performance and edge kernel performance.  The 

node kernels solely outperformed others when w(Ni) was either 

set to 1, cf or 1/idfw.  Hence, we can say that using just the node 

kernel outperformed using just the edge kernel or the concept 

graph kernel in most cases. 

 

 

Table 3: The performance of Node kernel, Edge kernel 

and Concept graph kernel.   The value of w(Ni) is one.  

The values reported are F1 scores. 

 Labels Node 

kernel 

Edge 

kernel 

Concept 

graph 

kernel 

Data set 1 A NaN 0.094 0.120 

B 0.191 0.140 0.177 

C 0.090 0.118 0.167 

D 0.111 0.111 0.146 

E 0.258 NaN 0.143 

F 0.462 0.171 0.362 

G 0.234 0.227 0.206 

Data set 2 A 0.298 0.094 NaN 

B 0.340 0.140 0.267 

C 0.315 0.118 0.333 

D 0.316 0.111 0.078 

E NaN NaN 0.148 

F 0.273 0.171 0.152 

 

5. CONCLUSION 
 

Categorizing biomedical text is a challenging problem due to 

the huge number of articles published every year. In this study, we 

propose a promising approach to text categorization based on 

building concept graphs to represent documents and classifying 

them using an SVM classifier. The results show that the rich 

representation of documents in form of graphs does significantly 

improve the classification performance when compared to 

traditional Naïve Bayes method.  It was also interesting to note 

that in some cases addition of relationships (edges) to the 

concepts did improve the classification performance but in most 

cases, using just the concept terms were sufficient.  However, we 

did not utilize the type of relationship that occurred between the 

concept terms, which might have contributed in deteriorating the 

performance. 
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